On probabilistic constraints induced by rectangular sets and multivariate normal distributions

نویسندگان

  • Wim van Ackooij
  • René Henrion
  • Andris Möller
  • Riadh Zorgati
چکیده

In this paper, we consider optimization problems under probabilistic constraints which are defined by two-sided inequalities for the underlying normally distributed random vector. As a main step for an algorithmic solution of such problems, we derive a derivative formula for (normal) probabilities of rectangles as functions of their lower or upper bounds. This formula allows to reduce the calculus of such derivatives to the calculus of (normal) probabilities of rectangles themselves thus generalizing a similar well-known statement for multivariate normal distribution functions. As an application, we consider a problem from water reservoir management. One of the outcomes of the problem solution is that the (still frequently encountered) use of simple individual probabilistic can completely fail. In contrast, the (more difficult) use of joint probabilistic constraints which heavily depends on the derivative formula mentioned before yields very reasonable and robust solutions over the whole time horizon considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Support vector regression with random output variable and probabilistic constraints

Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...

متن کامل

Completeness in Probabilistic Metric Spaces

The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...

متن کامل

Multi-granulation fuzzy probabilistic rough sets and their corresponding three-way decisions over two universes

This article introduces a general framework of multi-granulation fuzzy probabilistic roughsets (MG-FPRSs) models in multi-granulation fuzzy probabilistic approximation space over twouniverses. Four types of MG-FPRSs are established, by the four different conditional probabilitiesof fuzzy event. For different constraints on parameters, we obtain four kinds of each type MG-FPRSs...

متن کامل

Hölder and Lipschitz stability of solution sets in programs with probabilistic constraints

We study perturbations of a stochastic program with a probabilistic constraint and r-concave original probability distribution. First we improve our earlier results substantially and provide conditions implying Hölder continuity properties of the solution sets w.r.t. the Kolmogorov distance of probability distributions. Secondly, we derive an upper Lipschitz continuity property for solution set...

متن کامل

Comparing Mean Vectors Via Generalized Inference in Multivariate Log-Normal Distributions

Abstract In this paper, we consider the problem of means in several multivariate log-normal distributions and propose a useful method called as generalized variable method. Simulation studies show that suggested method has a appropriate size and power regardless sample size. To evaluation this method, we compare this method with traditional MANOVA such that the actual sizes of the two methods ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Meth. of OR

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2010